Аминокислоты в организме. Аминокислоты (32 показателя)(вэжх) Генетический анализ на аминокислоты

Основу протеинового белка составляют аминокислоты — органические соединения в организме человека. Для выявления проблем с функционированием печени и почек, необходимо провести анализ крови на аминокислоты, так как нарушенный аминокислотный обмен приводит к заболеваниям этих органов. Степень усвоения и метаболический дисбаланс устанавливается путем проведения анализа 20 аминокислот.

Признаки нарушения

Следующее сочетание симптомов у детей и взрослых, являются признаками нарушения аминокислотного обмена:

  • умственная отсталость;
  • ухудшение зрения;
  • поражения кожи различного вида;
  • специфический запах и цвет мочи.
  • периодически .

Некоторые аминокислоты синтезируются в организме, а некоторые поставляются с потреблением пищи.

Типы

Аланин . С помощью аминокислоты аланина центральная нервная система и головной мозг получают энергию. Аланин участвует в метаболизме органических кислот и сахаров, а также вырабатывает , что способствует укреплению иммунитета. Кроме того, из данного типа аминокислот может вырабатываться глюкоза, то есть регуляция проходит с участием аланина.

Аргинин. Это заменимая аминокислота, с помощью которой из организма человека выводится конечный азот.

Аспаргиновая кислота. Содержится в белковом составе. При увеличении ее концентрации в моче, возникает дикарбоксильная аминоацидурия.

Глутаминовая кислота . Глутаминовая аминокислота выполняет в организме множество функций, среди которых участие в обмене белками и углеводами, стимулирование окислительных процессов, повышение устойчивости организма к гипоксии (), нормализация обмена веществ. Она способствует выведению токсинов и аммиака из организма.

Глицин. В ЦНС протекают процессы возбуждения и торможения. За нормальное функционирование этих процессов отвечает глицин. Он способствует улучшению умственной работоспособности, а также помогает человеку справиться со стрессом.

Треонин. Треонин способствует стимуляции иммунной системы, улучшает энергообсеспечение. К его функциям относится обезвреживание аммиака.

Метионин. Дезинтоксикация ксенобиотиков протекает с помощью метионина. Гормоны, витамины, белки и активируются благодаря метионину.

Тирозин. Синтез тирозина может протекать в организме. Он является незаменимой аминокислотой. Повышенное содержание тирозина в крови говорит о возможном сепсисе.

Валин. Синтез роста тканей тела невозможен без валина. Он способствует стимуляции координации, улучшает умственную деятельность и активность. Поврежденные ткани восстанавливаются благодаря валину, также с его участием протекает метаболизм в мышцах.

Фенилаланин . Аминокислота фенилаланина способствует и способности к обучению. Фенилаланин способен уменьшить боль и подавить аппетит. Он также оказывает влияние на настроение.

Лейцин и изолейцин. Лейцин и изолейцин это аминоксилоты, действуя вместе, служат источниками энергии. Еще одной их функцией является защита мышечных тканей. На психическую устойчивость и физическую выносливость влияет изолицейн. Без него невозможна выработка . Он также осуществляет регуляцию уровня сахара в крови и занимает важное место при проблемах с психикой и физических нагрузках. Лейцин отвечает за восстановление кожи, мышц, костей, так как вырабатывает гормон роста.

Диагностика


  • Болезнь Кушинга – повышенное содержание аланинина;
  • Подагра – повышенное содержание аланинина, повышенный уровень глутаминовой кислоты, пониженное содержание глицина;
  • – пониженное содержание глицина;
  • Белковая непереносимость – повышенное содержание аланинина;
  • Кеотическая гипогликемия – недостаток аланина;
  • Хроническая почечная недостаточность – недостаток аланина, аргинина, глутаминовой кислоты, тирозина, повышенное содержание глицина;
  • Гиперинсулинемия 2 типа – высокий уровень аргинина;
  • Ревматоидный артрит – недостаток аргинина, тирозина, повышенный уровень глутаминовой кислоты;
  • Дикарбоксильная аминоацидурия – повышенная концентрация аспаргиновой кислоты в моче;
  • Рак поджелудочной – повышенный уровень глутаминовой кислоты;
  • Гипераммониемия 1 типа – повышенное содержание глицина;
  • – повышенное содержание глицина;
  • Тяжелые ожоги – повышенное содержание глицина;
  • Голодание – повышенное содержание глицина, валина.
  • Нарушение толерантности к белку – повышенный уровень треонина;
  • Болезни печени – повышенный уровень треонина, метионина;
  • Дефицит пируват-карбоксилазы – повышенный уровень треонина;
  • Интоксикация аммонием – повышенный уровень треонина;
  • Гомоцистинурия – повышенный уровень треонина;
  • Карциноидный синдром – повышенный уровень треонина;
  • Гомоцистинурия – пониженный уровень треонина;
  • Нарушение белкового питания – пониженный уровень треонина, повышенный уровень валина;
  • – повышенный уровень тирозина, фенилаланина;
  • Микседема – пониженный уровень тирозина;
  • Гипотиреоидизм — пониженный уровень тирозина;
  • Поликистоз почек — пониженный уровень тирозина;
  • Гипотермия – пониженный уровень тирозина;
  • Фенилкетонурия – пониженный уровень тирозина, повышенное содержание фенилаланина;
  • Карциноидный синдром – пониженный уровень тирозина, повышенный уровень валина;
  • Печеночная энцефалопатия – недостаток валина (также свидетельствует о нарушении координации, повышенной чувствительности кожи к раздражителям), повышенное содержание фенилаланина;
  • Преходящая тирозинемия новорожденных – повышенное содержание фенилаланина;
  • Вирусный гепатит — повышенное содержание фенилаланина;
  • Гиперфенилаланинемия — повышенное содержание фенилаланина.

Отклонения от нормы анализа крови на аминокислоты являются поводом для беспокойства.

По мнению врачей, следующим группам людей необходимо делать анализ крови на аминокислоты (32 показателя):

  • младенцы;
  • вегетарианцы и люди, придерживающиеся диет;
  • спортсмены и люди, испытывающие повышенную физическую нагрузку.

Процедура сдачи анализа

Анализ крови на аминокислоты можно сдать во многих клиниках. Перед сдачей аминокислотного анализа нельзя принимать пищу в течение 4 часов. проводится из пятки. Возможно образование гематомы. Срок выполнения анализа составляет около 16 дней.

Анализ крови на аминокислоты для детей имеет большое значение, так как помогает своевременно выявить проблемы со здоровьем и приступить к лечению.

Анализ крови на аминокислоты и ацилкарнитины проводится с целью выявления наследственных болезней. Чем раньше обнаружится патология, тем больше вероятность предотвращения тяжелых заболеваний.


Аминокислоты - это основополагающая часть белков или протеинов. Когда их показатели в норме, то все процессы в организме протекают нормально. Анализ проводится по 32 показателям путем забора крови, биоматериалом для данного анализа также может служить моча. Кровь сдается натощак.

Причины назначения анализа на аминокислоты.

  • Контроль нормального функционирования всех систем организма.
  • Для более точной постановки диагноза болезней, связанных с нарушением аминокислотного обмена.

Нормы содержания аминокислот в крови в мкмоль/л для взрослых.

Аланин -177-583.
Аргинин - 15-140.
Аспарагиновая кислота- 1-240.
Цитрулин - 16-51.
Глутаминовая кислота- 92-497.
Глицин - 122-422.
Метионин - 6-34.
Орнитин - 27-183.
Фенилаланин -20-87.
Тирозин - 24-96.
Валин 92-313.
Лейцин 74-196.
Изолейцин35-104.
Гидроксипролин-0-96.
Серин-60-172.
Аспарагин31-90.
Альфа-аминоадипиновая кислота-< 1,5.
Глутамин -372-876.
Бета-аланин-<5.
Таурин-29-136.
Гистидин-57-114.
Треонин-73-216.
1-метилгистидин-0-12.
3-метилгистидин-0-9,8.
Гамма-аминомасляная к-та-<1,5.
Бета-аминоизомасляная к-та-0-3,2.
Альфа-аминомасляная кислота-<40.
Пролин -99-363.
Цистатионин-<0,3.
Лизин-120-318.
Цистин-0,8-30.
Цистеиновая к-та-0.

За что отвечают аминокислоты.


Аминокислоты
отвечают за многие процессы, происходящие внутри человеческого организма - они участвуют в работе печени, почек, стимулируют работу пищеварительной системы. Обмен веществ тоже не обходится без них.

Аминокислоты активизируют умственную деятельность, улучшают память, активизируют обмен веществ. Эндокринная система тоже не может нормально функционировать без аминокислот. Выход за границы определенных норм свидетельствует о тяжелых заболеваниях, чаще всего печени и почек. Половина вышеперечисленных аминокислот человеческий организм способен синтезировать самостоятельно, оставшаяся часть должна поступать извне вместе с пищей. Потребность человека в каждой аминокислоте невелика и составляет 0,5- 2 грамма в сутки. Исключение любой аминокислоты из рациона влечет за собой нарушение хрупкого баланса обменных процессов нашего организма.

Срок проведения анализа: 10 дн.

Аминокислоты - это органические соединения, являющиеся строительным материалом для белков и мышечных тканей. Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Состав исследования:

  • 1-метилгистидин (1MHIS).
  • 3-метилгистидин (3MHIS).
  • a-аминоадипиновая кислота (AAA).
  • a-аминомасляная кислота (AABA).
  • b-аланин (BALA).
  • b-аминоизомасляная кислота (BAIBA).
  • y-аминомасляная кислота (GABA).
  • Аланин (Ala).
  • Аргинин (Arg).
  • Аспарагин (ASN).
  • Аспарагиновая кислота (Asp).
  • Валин (Val).
  • Гидроксипролин (HPRO).
  • Гистидин (HIS).
  • Глицин (Gly).
  • Глутамин (GLN).
  • Глутаминовая кислота (Glu).
  • Изолейцин (ILEU).
  • Лейцин (LEU).
  • Лизин (LYS).
  • Метионин (Met).
  • Орнитин (Orn).
  • Пролин (PRO).
  • Серин (SER).
  • Таурин (TAU).
  • Тирозин (Tyr).
  • Треонин (THRE).
  • Фенилаланин (Phe).
  • Цистатионин (CYST).
  • Цистеиновая кислота (CYSA).
  • Цистин (CYS).
  • Цитруллин (Cit).
Аланин - принимает участие в выработке антител, синтезе глюкозы, деятельности центральной нервной системы. Количество аланина влияет на функционирование почек, возможность организма самоочищаться от шлаков белковой природы.

Аргинин - является условно заменимой аминокислотой, то есть она должна постоянно поступать в организм с пищей. Аргинин участвует в производстве оксида азота, способствует ускорению синтеза гормона роста и других гормонов, ускоряет заживление и укрепляет кровеносные сосуды. В организме присутствует в свободном виде и в составе белков. Аргинин лежит в основе синтеза орнитина.

Орнитин - стимулирует выделение инсулина и гормона роста. Он помогает защитить печень от воздействия токсических веществ, а также стимулирует регенерацию и восстановление печёночных клеток. Чрезвычайно важная роль орнитина связана с его участием в цикле мочеобразования, необходимого для вывода аммиака. Аммиак образуется при распаде белков и является ядовитым для организма веществом. Орнитин участвует в его переработке с образованием мочевины. Мочевина также оказывает токсическое действие, увеличивает нервную возбудимость. Благодаря орнитину эти токсины выводятся из организма.

Аспарагиновая кислота - участвует в реакциях переаминирования и цикла мочевины.

Цитруллин - стимулирует детоксикацию аммиака, поддерживает иммунитет. Он играет важную роль в метаболических процессах организма.

Глутаминовая кислота - влияет на усвоение кальция, углеводный обмен и является важным нейромедиатором.

Глицин - регулирует обмен веществ, улучшает мозговую деятельность.

Метеонин - предотвращает отложение жиров на стенках сосудов и в печени, улучшает пищеварение, защищает организм от воздействия токсичных веществ и радиации.

Фенилаланин - участвует в образовании нейромедиаторов, норадреналина и допамина, улучшает умственную деятельность, нормализует аппетит.

Тирозин - нормализует деятельность гипофиза, щитовидной железы, надпочечников, из него синтезируется норадреналин и дофамин.

Валин - регулирует мышечную деятельность, регенерирует поврежденные ткани. Необходим для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Лейцин и изолейцин - участвуют в восстановительных процессах костей, мышц, кожных покровов, активируют выработку гормона роста, снижают уровень сахара в крови и являются источниками энергии. Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия. Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин - содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нарушается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин - относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот: глицина, цистеина, метионина, триптофана. Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицератдегидрогеназы, подагра. Повышение концентрации серина: непереносимость белка. Моча - ожоги, болезнь Хартнупа.

Аспарагин - необходим для поддержания баланса в процессах, происходящих в центральной нервной системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени. Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Alpha-аминоадипиновая кислота - метаболит основных биохимических путей лизина. Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин - выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: кровь - гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия, гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча - болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

Beta-аланин - является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина. Повышение концентрации: гипер-β -аланинемия.

Таурин - способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: кровь - маниакально-депрессивный синдром, депрессивные неврозы.

Повышение концентрации таурина: моча - сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В 9), первый триместр беременности, ожоги.

Гистидин - входит в состав активных центров множества ферментов, является предшественником в биосинтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: ревматоидный артрит. Повышение концентрации гистидина: гистидинемия, беременность, болезнь Хартнупа, генерализованная аминоацидурия.

Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: хроническая почечная недостаточность, ревматоидный артрит. Повышение концентрации треонина: болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин - основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1-метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин - является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета. Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Gamma-аминомасляная кислота - содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Beta-аминоизомасляная (β) - аминоизомасляная кислота - небелковая аминокислота, которая является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Alpha-аминомасляная (α) - аминомасляная кислота является основным промежуточным продуктом биосинтеза офтальмовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин - одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: хорея Хантингтона, ожоги.

Повышение концентрации: кровь - гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча - гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин - cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиновая непереносимость.

Повышение концентраций: кровь - гиперлизинемия, глутаровая ацидемия тип 2. Моча - цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме - является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги. Повышение концентраций цистина: кровь - сепсис, хроническая почечная недостаточность. Моча - цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота - серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные аминокислоты - незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин) - должны поступать с пищей. Исключение какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Переоценить роль аминокислот в деятельности организма невозможно.

Показания:

  • диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.
Подготовка
Накануне сдачи анализа не рекомендуется употреблять в пищу овощи и фрукты, которые могут изменить цвет мочи (свёкла, морковь, клюква и т.п.), принимать диуретики.

Собирают строго утреннюю порцию мочи, выделенную сразу же после сна. Перед сбором мочи необходимо провести тщательный гигиенический туалет внешних половых органов. При первом утреннем мочеиспускании небольшое количество мочи (первые 1–2 сек) выпустить в унитаз, затем собрать всю порцию мочи в чистую емкость, не прерывая мочеиспускания. Мочу отлить в стерильный пластиковый контейнер с завинчивающейся крышкой приблизительно 50 мл. Во время сбора мочи желательно не касаться контейнером тела. Доставить контейнер с мочой в медицинский офис необходимо как можно скорее с момента взятия биоматериала.

Интерпретация результатов
Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных.
Единицы измерения - мкмоль/л.

1. 1-метилгистидин (1-Methylhistidine)

  • <= 1 года: 17–419
  • > 1 года до < 3 лет: 18–1629
  • >= 3 лет до <= 6 лет: 10–1476
  • > 6 лет до <= 8 лет: 19–1435
  • > 8 лет до < 18 лет: 12–1549
  • >= 18 лет: 23–1339
2. 3-метилгистидин (3-Methylhistidine)
  • <= 1 года: 88–350
  • > 1 года до < 3 лет: 86–330
  • >= 3 лет до <= 6 лет: 56–316
  • > 6 лет до <= 8 лет: 77–260
  • > 8 лет до < 18 лет: 47–262
  • >= 18 лет: 70–246
3. a-аминоадипиновая кислота (AAA)
  • <= 30 дней: 0–299,7
  • > 30 дней до < 2 лет: 0–403,1
  • >= 2 лет до <= 11 лет: 0–211,1
  • > 11 лет до <= 17 лет: 0–167
  • > 17 лет: 0–146,7
4. a-аминомасляная кислота (Alpha-amino-n-butyric Acid)
  • <= 1 года: 0–63
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–38
  • > 6 лет до <= 8 лет: 0–30
  • > 8 лет до < 18 лет: 0–31
  • >= 18 лет: 0–19
5. b-аланин (Beta-Alanine)
  • <= 1 года: 0–219
  • > 1 года до < 3 лет: 0–92
  • >= 3 лет до <= 6 лет: 0–25
  • > 6 лет до <= 8 лет: 0–25
  • > 8 лет до < 18 лет: 0–49
  • >= 18 лет: 0–52
6. b-аминоизомасляная кислота (Beta-aminoisobutyric Acid)
  • <= 1 года: 18–3137
  • > 1 года до < 3 лет: 0–980
  • >= 3 лет до <= 6 лет: 15–1039
  • > 6 лет до <= 8 лет: 24–511
  • > 8 лет до < 18 лет: 11–286
  • >= 18 лет: 0–301
7. y-аминомасляная кислота (Gamma Amino-n-butyric Acid)
  • <= 1 года: 0–25
  • > 1 года до < 3 лет: 0–13
  • >= 3 лет до <= 6 лет: 0–11
  • > 6 лет до <= 8 лет: 0–6
  • > 8 лет до < 18 лет: 0–5
  • >= 18 лет: 0–5
8. Аланин (Alanine)
  • <= 1 года: 93–3007
  • > 1 года до < 3 лет: 101–1500
  • >= 3 лет до <= 6 лет: 64–1299
  • > 6 лет до <= 8 лет: 44–814
  • > 8 лет до < 18 лет: 51–696
  • >= 18 лет: 56–518
9. Аргинин (Arginine)
  • <= 1 года: 10–560
  • > 1 года до < 3 лет: 20–395
  • >= 3 лет до <= 6 лет: 14–240
  • > 6 лет до <= 8 лет: 0–134
  • > 8 лет до < 18 лет: 0–153
  • >= 18 лет: 0–114
10. Аспарагин (ASN)
  • <= 30 дней: 0–2100,3
  • > 30 дней до < 2 лет: 0–1328,9
  • >= 2 лет до <= 11 лет: 0–687,8
  • > 11 лет до <= 17 лет: 0–913,9
  • > 17 лет: 0–454,2
11. Аспарагиновая кислота (Aspartic Acid)
  • <= 1 года: 0–64
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–30
  • > 6 лет до <= 8 лет: 0–9
  • > 8 лет до < 18 лет: 0–11
  • >= 18 лет: 0–10
12. Валин (Valine)
  • <= 1 года: 11–211
  • > 1 года до < 3 лет: 11–211
  • >= 3 лет до <= 6 лет: 0–139
  • > 6 лет до <= 8 лет: 16–91
  • > 8 лет до < 18 лет: 0–75
  • >= 18 лет: 11–61
13. Гидроксипролин (Hydroxyproline)
  • <= 1 года: 0–2536
  • > 1 года до < 3 лет: 0–89
  • >= 3 лет до <= 6 лет: 0–46
  • > 6 лет до <= 8 лет: 0–19
  • > 8 лет до < 18 лет: 0–22
  • >= 18 лет: 0–15
14. Гистидин (Histidine)
  • <= 1 года: 145–3833
  • > 1 года до < 3 лет: 427–3398
  • >= 3 лет до <= 6 лет: 230–2635
  • > 6 лет до <= 8 лет: 268–2147
  • > 8 лет до < 18 лет: 134–1983
  • >= 18 лет: 81–1128
15. Глицин (Glycine)
  • <= 1 года: 362–18614
  • > 1 года до < 3 лет: 627–6914
  • >= 3 лет до <= 6 лет: 412–5705
  • > 6 лет до <= 8 лет: 449–4492
  • > 8 лет до < 18 лет: 316–4249
  • >= 18 лет: 229–2989
16. Глутамин (GLN)
  • <= 30 дней: 0–2279,4
  • > 30 дней до < 2 лет: 0–4544,3
  • >= 2 лет до <= 11 лет: 0–1920,6
  • > 11 лет до <= 17 лет: 0–822
  • > 17 лет: 0–1756,2
17. Глутаминовая кислота (Glutamic Acid)
  • <= 1 года: 0–243
  • > 1 года до < 3 лет: 12–128
  • >= 3 лет до <= 6 лет: 0–76
  • > 6 лет до <= 8 лет: 0–39
  • > 8 лет до < 18 лет: 0–62
  • >= 18 лет: 0–34
18. Изолейцин (Isoleucine)
  • <= 1 года: 0–86
  • > 1 года до < 3 лет: 0–78
  • >= 3 лет до <= 6 лет: 0–62
  • > 6 лет до <= 8 лет: 0–34
  • > 8 лет до < 18 лет: 0–28
  • >= 18 лет: 0–22
19. Лейцин (Leucine)
  • <= 1 года: 0–200
  • > 1 года до < 3 лет: 15–167
  • >= 3 лет до <= 6 лет: 12–100
  • > 6 лет до <= 8 лет: 13–73
  • > 8 лет до < 18 лет: 0–62
  • >= 18 лет: 0–51
20. Лизин (Lysine)
  • <= 1 года: 19–1988
  • > 1 года до < 3 лет: 25–743
  • >= 3 лет до <= 6 лет: 14–307
  • > 6 лет до <= 8 лет: 17–276
  • > 8 лет до < 18 лет: 10–240
  • >= 18 лет: 15–271
21. Метионин (Methionine)
  • <= 1 года: 0–41
  • > 1 года до < 3 лет: 0–41
  • >= 3 лет до <= 6 лет: 0–25
  • > 6 лет до <= 8 лет: 0–23
  • > 8 лет до < 18 лет: 0–20
  • >= 18 лет: 0–16
22. Орнитин (Ornithine)
  • <= 1 года: 0–265
  • > 1 года до < 3 лет: 0–70
  • >= 3 лет до <= 6 лет: 0–44
  • > 6 лет до <= 8 лет: 0–17
  • > 8 лет до < 18 лет: 0–18
  • >= 18 лет: 0–25
23. Пролин (Proline)
  • <= 1 года: 28–2029
  • > 1 года до < 3 лет: 0–119
  • >= 3 лет до <= 6 лет: 0–78
  • > 6 лет до <= 8 лет: 0–20
  • > 8 лет до < 18 лет: 0–28
  • >= 18 лет: 0–26
24. Серин (Serine)
  • <= 1 года: 18–4483
  • > 1 года до < 3 лет: 284–1959
  • >= 3 лет до <= 6 лет: 179–1285
  • > 6 лет до <= 8 лет: 153–765
  • > 8 лет до < 18 лет: 105–846
  • >= 18 лет: 97–540
25. Таурин (Taurine)
  • <= 1 года: 37–8300
  • > 1 года до < 3 лет: 64–3255
  • >= 3 лет до <= 6 лет: 76–3519
  • > 6 лет до <= 8 лет: 50–2051
  • > 8 лет до < 18 лет: 57–2235
  • >= 18 лет: 24–1531
26. Тирозин (Tyrosine)
  • <= 1 года: 39–685
  • > 1 года до < 3 лет: 38–479
  • >= 3 лет до <= 6 лет: 23–254
  • > 6 лет до <= 8 лет: 22–245
  • > 8 лет до < 18 лет: 12–208
  • >= 18 лет: 15–115
27. Треонин (Threonine)
  • <= 1 года: 25–1217
  • > 1 года до < 3 лет: 55–763
  • >= 3 лет до <= 6 лет: 30–554
  • > 6 лет до <= 8 лет: 25–456
  • > 8 лет до < 18 лет: 37–418
  • >= 18 лет: 31–278
28. Триптофан (Tryptophan)
  • <= 1 года: 14–315
  • > 1 года до < 3 лет: 14–315
  • >= 3 лет до <= 6 лет: 10–303
  • > 6 лет до <= 8 лет: 10–303
  • > 8 лет до < 18 лет: 15–229
  • >= 18 лет: 18–114
29. Фенилаланин (Phenylalanine)
  • <= 1 года: 14–280
  • > 1 года до < 3 лет: 34–254
  • >= 3 лет до <= 6 лет: 20–150
  • > 6 лет до <= 8 лет: 21–106
  • > 8 лет до < 18 лет: 11–111
  • >= 18 лет: 13–70
30. Цистатионин (Cystathionine)
  • <= 1 года: 0–302
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–26
  • > 6 лет до <= 8 лет: 0–18
  • > 8 лет до < 18 лет: 0–44
  • >= 18 лет: 0–30
31. Цистин (Cystine)
  • <= 1 года: 12–504
  • > 1 года до < 3 лет: 11–133
  • >= 3 лет до <= 6 лет: 0–130
  • > 6 лет до <= 8 лет: 0–56
  • > 8 лет до < 18 лет: 0–104
  • >= 18 лет: 10–98
32. Цитруллин (Citrulline)
  • <= 1 года: 0–72
  • > 1 года до < 3 лет: 0–57
  • >= 3 лет до <= 6 лет: 0–14
  • > 6 лет до <= 8 лет: 0–9
  • > 8 лет до < 18 лет: 0–14
  • >= 18 лет: 0–12
Увеличение общего уровня аминокислот в крови возможно при:
  • эклампсии;
  • нарушении толерантности к фруктозе;
  • диабетическом кетоацидозе;
  • почечной недостаточности;
  • синдроме Рейе.
Снижение общего уровня аминокислот в крови может возникнуть при:
  • гиперфункции коры надпочечников;
  • лихорадке;
  • болезни Хартнупа;
  • хорее Хантингтона;
  • неадекватном питании, голодании (квашиоркоре);
  • синдроме мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта;
  • гиповитаминозе;
  • нефротическом синдроме;
  • лихорадке паппатачи (москитной, флеботомной);
  • ревматоидном артрите.
Первичные аминоацидопатии:
  • повышение аргинина, глутамина - дефицит аргиназы;
  • повышение аргининсукцината, глутамина - дефицит аргиносукциназы;
  • повышение цитруллина, глутамина - цитруллинемия;
  • повышение цистина, орнитина, лизина - цистинурия;
  • повышение валина, лейцина, изолейцина - болезнь кленового сиропа (лейциноз);
  • повышение фенилаланина - фенилкетонурия;
  • повышение тирозина - тирозинемия.
Вторичные аминоацидопатии:
  • повышение глутамина - гипераммониемия;
  • повышение аланина - лактацидоз (молочнокислый ацидоз);
  • повышение глицина - органические ацидурии;
  • повышение тирозина - транзиторная тирозинемия у новорождённых.

Индекс: N10.11

Биоматериал: Кровь c ЭДТА

Составляющие комплекса: Аминокислоты (32 показателя): Аланин (ALA), Аргинин (ARG), Аспарагиновая кислота (ASP), Цитруллин (CIT), Глутаминовая кислота (GLU), Глицин (GLY), Метионин (MET), Орнитин (ORN), Фенилаланин (PHE), Тирозин (TYR), Валин (VAL), Лейцин (LEU), Изолейцин (ILEU), Гидроксипролин (HPRO), Серин (SER), Аспарагин (ASN), a-аминоадипиновая к-та (AAA), Глутамин (GLN), b-аланин (BALA), Таурин (TAU), Гистидин (HIS), Треонин (THRE), 1-метилгистидин (1MHIS), 3-метилгистидин (3MHIS), y-аминомасляная к-та (GABA), b-аминоизомасляная к-та (BAIBA), a-аминомасляная к-та (AABA), Пролин (PRO), Цистатионин (CYST), Лизин (LYS), Цистин (CYS), Цистеиновая кислота (CYSA) - в крови.

Аминокислоты – это органические вещества, содержащие карбоксильные и аминные группы. В организме человека они подразделяются на заменимые и незаменимые. Незаменимые аминокислоты - триптофан, валин, треонин, аргинин, гистидин, изолейцин, лизин, лейцин, метионин, фенилаланин. Заменимые - пролин, глицин, аланин, аспартат, глутамат, аспарагин, глутамин, тирозин, серин, цистеин. Протеиногенные и нестандартные аминокислоты, это такие аминокислоты, метаболиты которых принимают участие в различных обменных процессах в организме. Патология ферментов на любом этапе трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, тем самым оказывать негативное влияние на гомеостаз.

Когда нарушается метаболизм аминокислот, это может быть как первичное проявляение (врожденное) так и вторичное (приобретенное). Клинические проявления этих патологических состояний являются разнообразными, но ранняя диагностика и вовремя назначенное лечение позволяют предотвратить развитие и прогрессирование симптомов заболевания.

Это исследование помогает в комплексной оценке концентрации стандартных и непротеиногенных аминокислот и их производных в крови, а также помогает определить состояние аминокислотного обмена в организме человека.

Использовать результаты данного исследования могут для различных целей, чаще всего при диагностике наследственных и приобретенных заболеваний, которые связанны с процессом нарушением метаболизма аминокислот, дифференциальной диагностике причин нарушений азотистого обмена, проведении мониторинга диетотерапии и контроля эффективности лечения, оценке пищевого статуса и изменении в питании.

К повышению общего количества аминокислот в организме может приводить: эклампсия, нарушение толерантности к фруктозе, диабетический кетоацидоз, почечная недостаточность, синдром Рейе.

К снижению общей концентрации аминокислот относятся такие причины как: гиперфункция коры надпочечников, длительная лихорадка, болезнь Хартнупа, хорея Хантингтона, неадекватное питание, а именно голодание, синдром мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта, гиповитаминоз, нефротический синдром и ревматоидный артрит

Клинические проявления при первичных аминоацидопатиях различаются в зависимости пораженной аминокислоты.

Повышение аргинина, глутамина, проявляется дефицитом аргиназы. Увеличение аргининсукцината, глутамина – дефицит аргиносукциназы.

А также увеличение цитруллина, глутамина (цитруллинемия),цистина, изолейцина (болезнь кленового сиропа), валина, лизина (цистинурия), орнитина, лейцина, другими словами – лейциноз).

Увеличение концентации фенилаланина приводит к фенилкетонурии, а повышение тирозина – тирозинемия .

Вторичные аминоацидопатии характеризуются следующими проявлениями:

Повышение глутамина – гипераммониемия. Увеличение концентрации аминокислоты аланин– лактацидоз либо, как его еще называют, молочнокислый ацидоз.

Нарушение концентрации глицина приводит к органическим ацидуриям , также патологически высокий уровень тирозина является следствием транзиторной тирозинемии у новорожденных детей.

  • Оптимальное время для процедуры взятия крови – с 8:00 до 11:00.
  • За сутки до исследования придерживаться сложившегося повседневного рациона питания. Не рекомендуется излишнее потребление продуктов одного типа: только мясо, только овощи и.т.д.
  • За 24 часа до взятия крови исключить:
  • - физические и эмоциональные перегрузки; авиаперелеты; температурные воздействия (посещение бань и саун, переохлаждение и т. д.); нарушение режима «сон-бодрствование»;
  • - употребление алкоголя;
  • - прием БАД;
  • - инструментальные медицинские обследования (УЗИ, рентген и др.) или процедуры (физиотерапия, массаж и др.).
  • Не менее, чем за 12 часов (но не более 14 часов) до взятия крови отказаться от приема пищи и напитков, за исключением питьевой воды. Последний перед взятием крови прием пищи – легкий.
  • За 1 час до взятия крови не курить.
  • Перед взятием крови необходимо пребывание в состоянии покоя не менее 20 минут.
  • При подготовке к взятию крови на фоне медикаментозной терапии прием или отмену лекарственных препаратов следует согласовывать с лечащим врачом.

Аргинин (Arg), Валин (Val), Лейцин (Leu), Метионин (Met), Фенилаланин (Phe), Аланин (Ala), Аспарагиновая кислота (Asp), Глицин (Gly), Глутаминовая кислота (Glu), Пролин (Pro), Тирозин (Tyr), Орнитин (Orn), Цитруллин (Cit).

Аминокислоты в крови являются особыми структурными химическими единицами, которые образуют белки. Многие из них вырабатываются в печени, но некоторые не могут быть синтезированы, поэтому их необходимо восполнять с пищей. Помимо того, что они участвуют в образовании белков, входящих в состав тканей и органов организма человека, некоторые из них:

Если организм человека испытывает нехватку одной из аминокислот, то начинаются серьезные проблемы, которые приводят к депрессии, ожирению, почечной недостаточности, проблемам с пищеварением и т.д., вплоть до замедления роста и развития. В особой группе риска находятся спортсмены, поддерживающие положительный азотный баланс при помощи анаболических препаратов и спортивного питания. В силу исключения из рациона многих необходимых продуктов туда попадают также вегетарианцы, веганы и худеющие при помощи диет специфического характера.

Анализ на аминокислоты в крови и моче признан незаменимым способом оценки и определения достаточного их содержания, степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе хронических заболеваний печени, почек, дыхательных органов, сердечно-сосудистой системы.

Функции основных аминокислот

Аминокислоты включают в себя 12 показателей: аргинин, аланин, аспарагиновую и глутаминовую кислоты, цитруллин, метионин, глицин, орнитин, валин, фенилаланин, тирозин, отношение – лейцин/изолейцин.


  • Аланин участвует в нормализации метаболизма углеводов и является составной частью пантеноловой кислоты (витамин В5) и коэнзима А, который производит необходимую энергию для мышечной деятельности. Он замедляет рост новообразований, в том числе злокачественных, за счет стимуляции иммунной системы. Увеличивает размер и улучшает активность вилочковой железы, которая вырабатывает Т-лимфоциты (защищают организм от опухолевых клеток и сигнализируют о начале синтеза антител), а также улучшает детоксикационные процессы в печени (обезвреживание аммиака).
  • Аргинин - важнейший компонент в обмене веществ мышечной ткани. Он помогает в поддержании оптимального азотного баланса, так как участвует в обезвреживании и транспортировке избыточного азота в организме.
  • При помощи аспарагин- амид аспарагиновой кислоты образуются связи в токсическом аммиаке. Она находится в свободном виде в составе белков и играет особую роль в обмене азотистых веществ, образовании мочевины и пиримидиновых оснований. Оказывает иммуномодулирующее биологическое действие, стабилизирует баланс торможения и возбуждения в ЦНС, повышает выносливость и др.
  • Глутаминовая кислота - это передающий импульсы в ЦНС нейромедиатор. Она улучшает проникновение кальция через гематоэнцефалический барьер и может использоваться клетками головного мозга как источник энергии, поскольку имеет важное значение в процессе углеводного обмена. Она также отнимает атомы азота в процессе образования глутамина, тем самым обезвреживая аммиак.
  • Цитруллин не входит в состав белков. Он вырабатывается в печени в процессе превращения аммиака в мочевину и биосинтеза аргинина в качестве побочного продукта. При патологически повышенной концентрации оказывает токсическое воздействие. Ребенок с врожденным недостатком одного из ферментов, предназначенных для химического расщепления белков в моче, плохо развивается. У него может наблюдаться ярко выраженная задержка умственного развития, поскольку вследствие нарушений в крови происходит накопление аминокислоты цитруллина и аммиака.

  • Глицин снижает дегенерацию мышечной ткани, поскольку является источником вещества, содержащегося в мышцах и используемого при синтезе ДНК и РНК - креатина. Выполняет функцию тормозного нейромедиатора и предотвращает эпилептические судороги. Он служит для синтеза желчных и нуклеиновых кислот, а также заменимых аминокислот.
  • Метионин принимает участие в переработке и устранении жировых отложений в стенках артерий и в печени. Синтез цистеина и таурина зависит от количества метионина в организме. Он улучшает пищеварение, защищает от воздействия радиации, обеспечивает детоксикационные процессы, уменьшает мышечную слабость, полезен при химической аллергии и остеопорозе.
  • Орнитин помогает высвобождению гормона роста, способствующего сжиганию жиров. Такой эффект усиливается с применением орнитина в совокупности с карнитином и аргинином. Он также необходим для работы иммунной системы, участвует в восстановлении печеночных клеток и детоксикационных процессах.
  • Фенилаланин превращается в тирозин, который используется в синтезе двух основных нейромедиаторов: норадреналина и допамина. Поэтому он оказывает влияние на настроение, улучшает память, уменьшает боль и повышает способность к обучению, подавляет чрезмерный аппетит. Его применяют в лечении артрита, болей при менструации, депрессии, ожирения, мигрени, болезни Паркинсона.
  • Тирозин - является предшественником нейромедиаторов дофамина и норадреналина, и очень важен при обмене фенилаланина. Он участвует в регуляции настроения; его дефицит приводит к нехватке норадреналина, что выражается в депрессивном состоянии. Тирозин способствует уменьшению жировых отложений, снижает аппетит и улучшает выработку мелатонина (он борется со старением и отвечает за здоровый сон), функции эндокринной системы, надпочечников и гипофиза. Тиреоидные гормоны образуются при соединением с тирозином атомов йода.
  • Валин оказывает стимулирующие действие и служит для восстановления целостности тканей, метаболизма в мышцах и поддержания нормального обмена азота в организме. Относится к группе разветвленных аминокислот и используется мышцами в качестве источника энергии. Его также часто применяют при выраженной нехватке аминокислот, возникшей в результате привыкания к определенным препаратам. Его переизбыток может привести к таким симптомам, как ощущение мурашек на коже (парестезия) и даже к галлюцинациям.
  • Изолейцин - одна из трех разветвленных аминокислот, которая служит для синтеза гемоглобина. Она помогает в регуляции и стабилизации сахара в крови, а также поддерживает энергетические процессы. Метаболизм изолейцина происходит в мышечной ткани. Он нужен при многих психических заболеваниях, нехватка этой аминокислоты приводит к появлению схожих с гипогликемией симптомов.
  • Лейцин также относится к группе разветвленных аминокислот. В совокупности они помогают защищать мышечные ткани и обеспечивают энергией, а также способствуют восстановлению, костей, мышц и кожи. Именно поэтому их рекомендуют принимать в послеоперационный период или после различных травм. Лейцин немного понижает уровень сахара и стимулирует выделение гормона роста. Его переизбыток может увеличить содержание аммиака в организме.

Причины и последствия нарушений концентрации аминокислот в крови

Исследования врачей показали, что нехватка аминокислот приводит к недостаточности всех синтетических процессов в человеческом организме. Быстрообновляющиеся системы (гуморальная и половая, костный мозг и др.) страдают в особенности.

Наследственные нарушения, характеризующиеся изменением концентрации аминокислоты в крови и ацилкарнитинов представляют собой наиболее многочисленную гетерогенную группу болезней метаболизма (тирозинемия, ФКУ, гистидинемия, гиперглицинемия и др.). Значения точной лабораторной диагностики этих заболеваний определяется тем, что часто их формы имеют схожую клиническую картину, что усложняет процесс выявления болезни. Избыточное накопление и повышение уровня многих аминокислот имеет токсическое воздействие.

  • Оптимальное время для процедуры взятия крови – с 8:00 до 11:00.
  • За сутки до исследования придерживаться сложившегося повседневного рациона питания. Не рекомендуется излишнее потребление продуктов одного типа: только мясо, только овощи и.т.д.
  • За 24 часа до взятия крови исключить:
  • - физические и эмоциональные перегрузки; авиаперелеты; температурные воздействия (посещение бань и саун, переохлаждение и т. д.); нарушение режима «сон-бодрствование»;
  • - употребление алкоголя;
  • - прием БАД;
  • - инструментальные медицинские обследования (УЗИ, рентген и др.) или процедуры (физиотерапия, массаж и др.).
  • Не менее, чем за 12 часов (но не более 14 часов) до взятия крови отказаться от приема пищи и напитков, за исключением питьевой воды. Последний перед взятием крови прием пищи – легкий.
  • За 1 час до взятия крови не курить.
  • Перед взятием крови необходимо пребывание в состоянии покоя не менее 20 минут.
  • При подготовке к взятию крови на фоне медикаментозной терапии прием или отмену лекарственных препаратов следует согласовывать с лечащим врачом.