Презентация на тему витамин в9. Презентация на тему "витамины"

Работу выполнил ученик 9 класса Денисенко Денис Железо и его роль в живых организмах. "Железо не только основа всего мира, самый главный металл окружающей нас природы, оно основа культуры и промышленности, оно орудие войны и мирного труда и трудно во всей таблице Менделеева найти другой такой элемент, который был бы так связан с прошлыми, настоящими и будущими судьбами человечества". А.Е.Ферсман Чистое железо - серебристо-белый металл, быстро коррозирующий при высоких температурах или при высокой влажности на воздухе. Название произошло от лат. ferrum - «твердый». Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С. Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Основные рудные минералы железа - магнетит, гематит, бурый железняк, сидерит.

  • Чистое железо - серебристо-белый металл, быстро коррозирующий при высоких температурах или при высокой влажности на воздухе. Название произошло от лат. ferrum - «твердый». Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С. Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Основные рудные минералы железа - магнетит, гематит, бурый железняк, сидерит.
РОЛЬ ЖЕЛЕЗА В ЖИВЫХ ОРГАНИЗМАХ Без железа невозможна жизнь животных, растений и человека. Без него не осуществимы жизненно важные процессы, без протекания которых всё живое обречено на гибель. Роль железа в организме огромна: 1. Входит в состав гемоглобина - белка, необходимого для переноса кислорода красными клетками крови к тканям. 2. Необходимо для дыхания тканей - оно отдает кислород и забирает углекислый газ. 3. Железо в организме играет ключевую роль в процессах роста. 4. Входит в состав многих ферментов, участвующих в пищеварении и энергетическом обмене. 5. Железо в организме играет важную роль в создании и проведении нервных импульсов по нервным волокнам. 6. Участвует в формировании клеток иммунной системы, поддерживая хороший иммунитет.

Значение железа в жизнедеятельности растений.

Железо потребляется растениями в значительно меньших количествах (1 - 10 кг с 1 га), чем другие макроэлементы. Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Оно входит в состав ферментов, участвующих в создании хлорофилла, хотя в него этот элемент не входит. Железо участвует в окислительно - восстановительных процессах, протекающих в растениях, так как оно способно переходить из окисленной формы в закисную и обратно. Кроме того, без железа невозможен процесс дыхания растений, поскольку оно является составной частью дыхательных ферментов. Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями. Листья становятся светло - желтыми. Железо не может, как калий и магний, передвигаться из старых тканей в молодые (т. е. повторно использоваться растением). Железное голодание чаще всего проявляется на карбонатных и сильноизвесткованных почвах. Особенно чувствительны к недостатку железа плодовые культуры и виноград. При длительном железном голодании у них происходит отмирание верхушечных побегов.

Интересно использование процесса окисления двухвалентного железа до трёхвалентного в телах особого вида бактерий - так называемых железобактерий. Они поглощают из окружающей среды соли двухвалентного железа и кислород, внутри их организмов протекает реакция, приблизительно выражающаяся уравнением: 4Fe(HC03)2 + 2Н20 + 02 = 4Fe(OH)3 + 8С02 Выделяющаяся при этом энергия служит бактериям для поддержания их жизнедеятельности. Окисление железа является, следовательно, актом дыхания железобактерий и за меняет для них характерное для организмов высших растений окисление кислорода. Железобактерии размножаются главным образом в водах железистых источников, болотах, прудах и т. п. Нередко наблюдается также массовое развитие их колоний в водопроводных трубах. После отмирания бактерий накопившийся в их организмах гидроксид железа(Ш) оседает на дно водоёма, служившего им жизненной средой, что с течением времени приводит к образованию отложений так называемых болотных или озёрных железных руд. В частности, именно таково происхождение Керченского месторождения железных руд.

Значение железа в жизнедеятельности животных.

Оно участвует в окислительно-восстановительных реакциях, играющих важную роль в обмене веществ и питании животного. Общее содержание железа в теле животных составляет около 0,005% или примерно 45 мг на 1 кг живой массы, но в крови железа в 10-12 раз больше. В зеленых кормах его содержится много (около 100-200 мг на 1 кг сухого вещества). Железо входит в состав молекулы гемоглобина и некоторых дыхательных ферментов. Чаще всего железо находится в организме в соединении с белками. В печени, селезенке и костном мозге имеется ферритин, содержащий до 23% железа.

Потребность взрослых животных в железе невелика и полностью покрывается поступлениями его в организм с кормом. Поросята и цыплята в осенне-зимний период испытывают недостаток в этом элементе. При недостатке железа в рационе у животных развивается анемия (алиментарная), осложняемая недостатком меди.

Роль железа в организме человека В организме человека железо составляет всего 0,005-0,006% от общей массы тела. Если взрослый человек весит 70 кг, то всего 4 грамма приходится на долю железа. Почти 60%, поступающего в организм железа расходуется на синтез гемоглобина. Некоторое количество (примерно 20%) - откладывается в мышцах, костном мозге, печени и селезенке. Еще 20% его используется для синтеза различных ферментов. У беременных и кормящих часть железа передается ребенку для полноценного формирования головного и костного мозга. Во время болезней его расход увеличивается, так как оно необходимо для синтеза иммунных клеток. В нашем организме железа очень мало, но без него невозможно было бы осуществление многих функций. Основная роль железа в организме – участие в «рождении» красных (эритроцитов) и белых (лимфоцитов) кровяных клеток. Непосредственную доставку кислорода к каждой клетке осуществляет входящее в состав крови специальное белковое соединение гемоглобин. Он состоит из двух частей: крупной белковой молекулы - глобина и встроенной в нее небелковой структуры - гема, в сердцевине которого и находится ион железа. Этот ион легко вступает в связь с кислородом и именно соединение кислорода с железом окрашивает кровь в красный цвет. УСВОЯЕМОСТЬ ЖЕЛЕЗА В ОРГАНИЗМЕ В организм человека железо поступает с пищей . Пищевые продукты животного происхождения содержат железо в наиболее легко усваиваемой форме. Некоторые растительные продукты также богаты железом, однако его усвоение организмом происходит тяжелее. Поступившее в желудочно-кишечный тракт с пищей железо подвергается воздействию желудочного сока, происходит его ионизация. Всасывается оно главным образом в двенадцатиперстной кишке и в верхних отделах тонкого кишечника. Как только железо попадает в кровоток, оно связывается с белком (трансферрином) и транспортируется туда, где необходимо (в костный мозг, печень и т. д.). Схематически обмен железа в организме выглядит следующим образом: Различают два вида железа - гемовое (входит в состав гемоглобина) и негемовое . Гемовое железо содержится в мясе (особенно много его в печени и почках), негемовое - в растительной пище. Если гемовое железо усваивается хорошо, то негемовое значительно хуже. Чтобы организм лучше усвоил его, оно должно быть обязательно двухвалентным, трехвалентное не усваивается вообще. СУТОЧНАЯ ПОТРЕБНОСТЬ ОРГАНИЗМА В ЖЕЛЕЗЕ Суточная потребность в железе составляет: У детей до 14 лет от 4 до 18 мг в сутки. У юношей от 14 до 18 лет - 11 мг. У девушек от 14 до 18 лет - 15 мг. У мужчин от18 до 50 лет - 10 мг. У женщин от 18 до 50 лет - 18 мг. У беременных женщин - 33 мг. У кормящих женщин - 38 мг. У мужчин старше 50 лет – 8 мг. У женщин старше 50 лет - 8 мг. Токсическая доза для человека - 200 мг. Летальная доза для человека - 7-35 грамм. НЕДОСТАТОК ЖЕЛЕЗА В ОРГАНИЗМЕ Недостаток железа в организме может возникнуть при его недостаточном поступлении; при нарушении клеточного дыхания, которое развивается из-за недостатка двигательной активности; при гормональных нарушениях; от неправильного питания и модных диет; регулярного употребления рафинированных и богатых фосфатами продуктов: сахара, белого хлеба и выпечки из белой муки, белого риса, консервированных продуктов и сладостей. Недостаток железа в организме может возникнуть и при дефиците витаминов группы В (особенно В12) и С . Эти витамины помогают железу лучше усвоиться. В кишечнике при наличии неорганической щавелевой и фитиновой кислот железо не всасывается. Это одна из причин необходимости потребления содержащих железо продуктов в 2-3 раза больше суточной нормы.

Самыми распространенными симптомами дефицита железа являются: 1. Чувство усталости. 2. Бледная кожа, её шершавость и сухость. 3. Болезненные трещины в уголках рта и трещины на коже пяток. 4. Запор. 5. Ломкие ногти и слабые зубы. 6. Сухость ротовой полости, доходящая до того, что пища с трудом продвигается по пищеводу.

ИЗБЫТОК ЖЕЛЕЗА В ОРГАНИЗМЕ При некоторых наследственных заболеваниях; при заболеваниях печени, селезенки, поджелудочной железы (в том числе, в результате хронического алкоголизма); при избыточном поступлении извне и нарушении регуляции обмена железа, оно может накапливаться в организме. При этом избавиться от избытка железа часто намного труднее, чем устранить его дефицит.

Основные проявления избытка: 1. Отложение железа в тканях и органах, сидероз. 2. Головные боли, головокружения, повышенная утомляемость, слабость. 3. Угнетение клеточного и гуморального иммунитета. 4. Пигментация кожи. 5. Потеря аппетита, уменьшение массы тела. 6. Изжога, тошнота, рвота, боли в желудке, запор или диарея, изъязвление слизистой оболочки кишечника. 7. Печеночная недостаточность, фиброз. 8. Повышенная насыщенность железом трансферрина. 9. Снижение уровня сывороточного железа (в 1,5-3 раза). 10. Повышение риска развития атеросклероза, болезней печени и сердца, артритов, диабета и т.д. 11. Увеличение риска развития инфекционных и опухолевых заболеваний.

ВЛИЯНИЕ ЖЕЛЕЗА НА ЗДОРОВЬЕ При низком уровне железа в организме развивается железодефицитная анемия. При анемии уменьшается количество гемоглобина, эритроцитов и лимфоцитов, снижается иммунитет, увеличивается риск инфекционных заболеваний. У детей задерживается рост и умственное развитие, а взрослые ощущают постоянную усталость. Часто бывает, что человек получает достаточное количество железа, но все равно страдает от анемии. Это бывает в том случае, когда наблюдается дефицит витаминов, участвующих в кроветворении, особенно витаминов В6, В12 и фолиевой кислоты.

Слайд 2

Классификация витаминов:

  • Жирорастворимые
  • Водорастворимые
  • А;D;E;K
  • В1, В2, В3, В5, В6; В9, В12, а также витамины Н, С и Р.
  • Слайд 3

    • Витамины- низкомолекулярные органические вещества, поступающие в организм с продуктами питания. Витамины обычно входят в состав ферментов и влияют на многочисленные обменные процессы.
    • Потребность человека в витаминах зависит от его возраста, состояния здоровья,условий жизни, характера его деятельности, времени года, содержания в пищи основных компонентов питания
    • Витаминыоткрыты Н. И. Луниным в 1880 году.

    Первым выделил витамин в кристаллическом виде польский ученый Казимир Функ в 1911 году. Год спустя он же придумал и название - от латинского "vita" - "жизнь".

    Наибольшее количество витаминов имеется в растительных продуктах, но некоторые содержатся только в животных продуктах.

    При недостатке витаминов в пище в организме развиваются заболевания - гипоавитаминозы.

    Слайд 4

    Витамин

  • Слайд 5

    Витами́н A - группа близких по химическому строению веществ, которая включает ретинол аксерофтол) другие ретиноиды, обладающие сходной биологической активностью: дегидроретинол, ретиналь (ретинен, альдегид вит и ретиноевую кислоту. К провитаминам A относятся каротиноиды, которые являются метаболическими предшественниками витамина A; наиболее важным среди них является β-каротин. Ретиноиды содержатся в продуктах животного происхождения, а каротиноиды - растительных. Все эти вещества хорошо растворимы в неполярных органических растворителях (например, в маслах) и плохо растворимы в воде. Витамин А депонируется в печени, может накапливаться в тканях. При передозировке проявляет токсичность.

    Слайд 6

    Витамин А выполняет множество биохимически важных функций в организме человека и животных. Ретиналь является компонентом родопсина - основного зрительного пигмента. В форме ретиноевой кислоты витамин стимулирует рост и развитие. Ретинол является структурным компонентом клеточных мембран, обеспечивает антиоксидантную защиту организма

    Слайд 7

    При недостатке витамина A развиваются различные поражения эпителия, ухудшается зрение, нарушается смачивание роговицы. Также наблюдается снижение иммунной функции и замедление роста.

    Слайд 8

    Строение и формы

  • Слайд 9

    Витамин A представляет собой циклический непредельный спирт, состоящий из β-ионового кольца и боковой цепи из двух остатков изопрена и первичной спиртовой группы. В организме окисляется до ретиналя (витамин A-альдегид) и ретиноевой кислоты.

    В продуктах животного происхождения содержится во всех формах, однако так как чистый ретинол нестабилен, то основная часть находится в виде сложных эфиров ретинола (в промышленности в основном выпускается в виде пальмитата или ацетата).

    В растениях содержатся провитамины A - некоторые каротиноиды

    • Ретинол
    • Ретиналь
    • Ретиноевая кислота
  • Слайд 10

    Пищевые источники

  • Слайд 11

    Растительные (каротиноиды)

    Слайд 12

    Слайд 13

    Животные (ретиноиды)

    В среднем взрослому мужчине нужно 900 мкг, а женщине 700 мкг витамина A в сутки. Верхний допустимый уровень потребления для взрослых - 3000 мкг в сутки

    Слайд 14

    Витамин B

    Витамин B относится к ряду водорастворимых витаминов, и играет ключевую роль в обеспечении нормального функционирования мозга и нервной системы, а также формирования крови. Витамин В, как правило, участвует в метаболизме каждой клетки человеческого организма, особенно это касается синтеза и регулирования ДНК, а также синтеза жирных кислот и производства энергии.

    Слайд 15

    Витамин B1

    Витамин В1 из витаминов группы B был открыт первым. В ходе приготовления пищи теряется около 25 % витамина.

    Роль витамина B1 ворганизме:

    1.Обмен веществ.

    2. Витамин В1 обеспечивает нормальную работу ЦНС.

    Слайд 16

    Слайд 17

    Витамин B2

    • Витамин В2 или рибофлавин – это желто-оранжевое растворимое в воде вещество.
    • Роль витамина B2 в организме:
    • Нервная система, головной мозг: витамин B2 принимает участие в синтезе нервных клеток.
    • Система крови: рибофлавин стимулирует созревание эритроцитов, участвует в процессе усвоения железа.
    • Железы и гормоны: витамин B2 регулирует функционирование надпочечников, синтез и количество гормонов.
    • Глаза: защищает сетчатку от вредного влияния ультрафиолетовых лучей.
    • Кожа и слизистые оболочки: витамин B2 участвует в их образовании, в целом оказывает благотворное влияние.
  • Слайд 18

    Слайд 19

    Витамин В3 – это белый порошок, растворимый в воде. Химически он самый устойчивый из других витаминов группы В при воздействии нагревания, ультрафиолета, щелочей и воздуха.

    Витамин B3

    Роль витамина B3 в организме:

    • Обмен веществ.
    • Рост клеток.
    • Нервная система: ниацин поддерживает нормальное функционирование головного мозга и ЦНС.
    • Сердечнососудистая система: витамин B3 содействует повышению венозного давления и понижению артериального.
  • Слайд 20

    Витамин B5

    Пантотеновая кислота в качестве витамина была открыта в 1933 году. Оказалось, что она чрезвычайно широко распространена во всех живых объектах, за что и получила такое название. Витамин В5 хорошо растворим в воде. Он нетоксичен, легко выводится из организма.

    Роль витамина B5 в организме:

    • Пантотеновая кислота является мощным стимулятором синтеза гормонов надпочечников.
    • Также витамин В5 необходим для усвоения других витаминов и для нормального функционирования иммунной системы, т. к. принимает участие в синтезе антител.
  • Слайд 21

    Слайд 22

    Витамин В6 – это водорастворимая группа родственных соединений, сходных по химической структуре: пиридоксамин, пиридоксаль, пиридоксин.

    Витамин B6

    Роль витамина B6 в организме:

    • Обмен веществ: витамин B6 участвует практически во всех метаболических процессах.
    • Сердечнососудистая система: пиридоксин требуется для синтеза жиросодержащих веществ, регулирующих работу сердца и давление крови.
    • Иммунная система: воздействует на функции деления клеток и образование антител.
    • Головной мозг и нервная система: пиридоксин обеспечивает нормальную работу ЦНС.
    • Кожный покров (кожа, ногти, волосы): витамин B6 положительно влияет на их состояние.
  • Слайд 23

    Слайд 24

    Витамин B9

    Фолиевая кислота представляет собой водорастворимое вещество ярко-желтого цвета. В большом количестве содержится в зеленых овощах и листьях.

    Роль витамина B9 в организме:

    • Деление клеток: витамин B9 требуется для продуцирования РНК и ДНК.
    • Обмен веществ: фолиевая кислота принимает участие в белковом метаболизме.
    • Система крови: витамин B9 необходим для синтеза здоровых эритроцитов и лейкоцитов.
    • Кроме того, они требуется для развития спинного и головного мозга, а также скелета плода.
  • Слайд 25

    Слайд 26

    Витамин B12 представляет собой ярко-красное водорастворимое вещество с молекулой кобальта в середине. В организм витамин B12 поступает с продуктами питания, а также частично вырабатывается в кишечнике.

    Витамин B12

    Роль витамина B9 в организме:

    • Обмен веществ: витамин B12 требуется для высвобождения энергии из пищи, усвоения ряда жиров и аминокислот, преобразования фолата из пассивной формы в активную.
    • Нервная система, головной мозг: цианокобаламин необходим при нарушений эмоционального состояния.
    • Система крови: витамин B12 стимулирует свертывающую систему крови, усиливает иммунную систему.
    • Печень: витамин B12 уменьшает уровень холестерина в крови, благотворно влияет на работу органа.
  • Слайд 27

    Слайд 28

    Витамин С

    Слайд 29

    Витамин Сявляется водорастворимым витамином. Впервые выделен в 1923-1927 гг. излимонного сока.

    Витамин С

    Витамин С- мощный антиоксидант. Он играет важную роль в регуляции окислительно-восстановительных процессов, участвует в синтезе коллагена и проколлагена, обмене фолиевой кислоты и железа, а также синтезе стероидных гормонов и катехоламинов.

    Аскорбиновая кислота также регулирует свертываемость крови, нормализует проницаемость капилляров, оказывает противовоспалительное и противоаллергическое действие.

    • Аскарбиновая кислота
    • Фолиевая кислота
  • Слайд 30

    Витамин Сулучшает способность организма усваивать кальций и железо, выводить токсичные медь, свинец и ртуть.

    Важно, что в присутствии адекватного количества витамина С значительно увеличивается устойчивость витаминов В1, В2, A, E, пантотеновой и фолиевой кислот.

    Витамин С важен для роста и восстановления клеток тканей, десен, кровеносных сосудов, костей и зубов, способствует усвоению организмом железа, ускоряет выздоровление.

    Слайд 31

    Наиболее богаты аскорбиновой кислотой: киви, шиповник, красный перец, цитрусовые, чёрная смородина, лук, томаты, листовые овощи (салат, капуста, брокколи, брюссельская капуста, цветная капуста, и т.д.).

    Аскорби́новая кислота́ - органическое соединение, родственное глюкозе, является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани.

    Слайд 32

    Травы, богатые витамином С: люцерна, коровяк, корень лопуха, песчанка, очанка, семя фенхеля, пажитник сенной, хмель, хвощ, ламинария, мята перечная, крапива, овес, кайенский перец, красный перец, петрушка, сосновые иглы, тысячелистник, подорожник, лист малины, красный клевер, плоды шиповника, шлемник, листья фиалки, щавель.

    Суточная потребность в витамине С составляет для взрослого человека 70-120 мг

    Слайд 33

    При дефиците витамина С - кровоточивость десен, выпадение зубов, частые простуды, варикозное расширение вен, геморрой, излишний вес, повышенная утомляемость, раздражительность, плохая концентрация внимания, депрессии, бессонница, раннее образование морщин, выпадение волос, ухудшение зрения.Витамин С считается безопасным даже в больших количествах, так как организм легко выводит неиспользованные остатки витамина. Витамин С легко разрушается тепловой обработкой продуктов, светом и смогом. Курильщики и престарелые люди имеют повышенную потребность в витамине С (одна выкуренная сигарета разрушает 25 мг С).

    Слайд 34

    Интересные факты о витамине С:

    При недостаточном потреблении витамина С человек может заболеть цингой. В наше время эта болезнь не распространена, так как удовлетворить потребность организма в аскорбиновой кислоте довольно легко, достаточно разнообразно питаться, ведь он находится во многих продуктах. Однако, цингой страдали мореплаватели в 16-18-тых веках, потому как в течении долгих периодов ели только сухари и вяленое мясо.

    Избыток витамина С в организме так же вреден как и недостаток. Аскорбиновая кислота, принимаемая дозой более 2 грамм в сутки, приводит к недостатку витамина В12, а затем к малокровию. Для беременной женщины это может обернуться тем, что ее ребенок заболеет рикошетной цингой. К тому же избыток витамина С способствует развитию мочекаменной болезни.

    Слайд 35

    Витамин D (кальциферол)

    ВитаминD (кальциферол)-это группа жирорастворимых витаминов,которые образуются под действием ультрафиолетового облучения в тканях животных и растений из стеринов.

    Слайд 36

    Стерины

    Стерины- группа биохимических веществ из группы стероидов. В основе структуры стеринов лежит насыщенный тетрациклический углеводород стеран(на рис.).

    Слайд 37

    Кальциферол(витамин D)

    • Эргокальциферол
    • Холекальциферол
    • Витамины группы D образуются под действием ультрафиолета в тканях животных и растений из провитаминов.
  • Слайд 38

    Эргокальциферол(D2)

    Вещество только растительного происхождения.

    Провитамином является эргостерол.

    Слайд 39

    Холекальциферол(D3)

    Холекальциферол образуется в коже под действием ультрафиолетовых лучей и поступает в организм человека с пищей.

    Провитамином является 7-дегидрохолестерин.

    Слайд 40

    Отличительная особенность:

  • Слайд 41

    Источники витамина D:

    Ежедневная потребность для взрослого - 1 - 10 мкг

    Слайд 42

    Роль витамина D в организме:

    Основная функция витамина D - обеспечение нормального роста и развития костей, предупреждение рахита и остеопороза

    Увеличивает скорость работы мозга.

    3.Витамин обеспечивает всасывание кальция и фосфора в тонкой кишке, реабсорбцию фосфора в почечных канальцах и транспорт кальция из крови в костную ткань.

    Слайд 43

    1.30 минут - за это время летом светлокожий человек получает количество витамина D, равное 227 куриным яйцам или полкило печени трески.

    2.6 месяцев длится «зима витамина D» для жителей России, Северной Европы и Канады.

    3.Пигмент кожи меланин, который образуется в процессе загара, является естественным солнцезащитным фактором, поэтому темнокожим требуется в 3-6 раз большая доза инсоляции для выработки такого же количества витамина D, по сравнению со светлокожими.

    Слайд 44

    Витамин PP

    • Витамин PP (Никотиновая кислота) – Белый кристаллический порошок без запаха, слабокислого вкуса. Трудно растворим в холодной воде (1:70), лучше в горячей (1:15), мало растворим в этаноле, очень мало - в эфире.
    • Витамин PP участвует во многих окислительных реакциях живых клеток, лекарственное средство.
    • Благодаря Витамину PPчеловек защищён от сердечно-сосудистых заболеваний, тромбозов, гипертонии и диабета. Без витамина РР невозможна нормальная работа нервной системы.

    Никотиновая кислота(С6H5NO2)

    Слайд 45

    Синтез и свойства

    Впервые никотиновая кислота была синтезирована в 1873 году Вайделем при окислении никотина азотной кислотой, современные как лабораторные, так и промышленные методы синтеза никотиновой кислоты основаны также на окислении производных пиридина. Так, никотиновая кислота может быть синтезирована окислением β-пиколина:

    Либо окислением хинолина до пиридин-2,3-дикарбоновой кислоты с последующим ее декарбоксилированием:

    Слайд 46

    Витамин PPСодержится в ржаном хлебе, ананасе, гречке, фасоли, мясе, грибах, печени, почках. В пищевой промышленности используется в качестве пищевой добавки E375. Суточная потребность взрослого человека 15-20 мг.

    Слайд 47

    Гиповитаминоз РРприводит к пеллагре - заболеванию, симптомами которого являются дерматит, диарея, деменция (приобретённое слабоумие).

    Для профилактики гиповитаминоза РР наиболее предпочтительно сбалансированное питание; лечение требует дополнительного назначения витамина РР. Продукты, богатые витамином РР -печень, яичный желток, молоко, рыба, курица, зеленые овощи, земляные орехи, а также любая белковая пища, содержащая триптофан (ароматическая альфа-аминокислота).

    Слайд 48

    Интересные факты о витамине РР:

    1. Многие специалисты считают, что никотиновая кислота препятствует перерождению нормальных клеток в раковые.

    2. Никотиновая кислота не способна сжигать жиры, но она выводит из организма шлаки и токсины, превращает жиры и углеводы в энергию, поэтому многие женщины употребляют её для снижения веса.

    3. Никотиновую кислоту открыли случайно. И сделали учёные в США, во время крупной вспышки заболевания под названием «пеллагра».

    Слайд 49

    Гиповитаминоз

    • Гиповитаминоз - болезненное состояние, возникающее при нарушении соответствия между расходованием витаминов и поступлением их в организм; то же, что витаминная недостаточность.
    • Гиповитаминоз развивается при недостаточном поступлении витаминов. Гиповитаминоз развивается незаметно: появляется раздражительность, повышенная утомляемость, снижается внимание, ухудшается аппетит, нарушается сон.
    • Систематический длительный недостаток витаминов в пище снижает работоспособность, сказывается на состоянии отдельных органов и тканей (кожа, слизистые, мышцы, костная ткань) и важнейших функциях организма, таких как рост, интеллектуальные и физические возможности, продолжение рода, защитные силы организма.
  • Слайд 50

    Слайд 51

    Авитоминоз

    Авитамино́з - заболевание, являющееся следствием длительного неполноценного питания, в котором отсутствуют какие-либо витамины.

    Симптомы авитаминоза

    Бледная вялая кожа склонна к сухости и раздражению;- безжизненные сухие волосы с тенденцией к сечению и выпадению;- потрескавшиеся уголки губ, на которые не действуют ни крема, ни помады;- кровоточащие при чистке зубов десны;- частые простуды с трудным и долгим восстановлением;- постоянное чувство усталости, апатии, раздражения;

    Слайд 52

    Причины авитаминоза

    • Летом получить необходимую дозу витаминов только из фруктов не так-то просто. Чтобы восполнить суточную потребность в витаминах и микроэлементах, необходимо съедать не менее 1,5-2 кг плодов, ягод и овощей.
    • Настоящий авитаминоз - это тяжелое патологическое состояние, связанное с острой нехваткой в организме витаминов.
    • Кроме витаминов, организм может недополучить микроэлементы. По статистике, российским женщинам больше всего не хватает железа, йода и селена.
  • Слайд 53

    Посмотреть все слайды

    Общее описание

    История открытия
    Фолиевая кислота получила свое название от латинского слова «folium» - лист, поскольку впервые ее получили из зеленых листьев. Причем для того, чтобы выделить фолиевую кислоту в первый раз, ученым понадобилось 4 тонны шпината.
    Фолиевая (птероилглутаминовая) кислота называлась по-разному, в зависимости от вида животных или штамма бактерий, нуждающихся в ней: фактор роста L. casei ; витамин М, необходимый для нормального кроветворения у обезьян; витамин В С, фактор роста цыплят (индекс «с» от англ. «chicken» – цыпленок). Однако позднее было установлено, что все эти вещества имеют одну химическую формулу.
    Факт существования этого витамина установили в 1940 г. ученые Е. Снелл и В. Петерсон (E.E. Snell, W.H. Peterson). Они экспериментально показали, что для роста культуры Lactobacillus casei требуется неизвестный фактор, который не может быть заменен в питательной среде рибофлавином, пантотеновой кислотой, никотиновой кислотой и пиридоксином. Ученые предположили, что этот фактор роста является пурином.
    В 1941 г. Р. Стокстэд (R.L. Stokstad) выделил из печени препарат, ускоряющий более чем в 7 раз рост культуры L. casei . Это вещество получило название фактор роста L. с asei . В том же году Митчелл (H.K. Mitchell), Е. Снелл и Р. Вильямс (R.G. Williams) выделили вещество, содержащее азот, но лишенное серы и фосфора. Оно и было названо фолиевой кислотой.
    Наряду с фолиевой кислотой к витаминам относятся и ее производные, в том числе ди-, и полиглутаматы. Все такие производные вместе с фолиевой кислотой объединяются под названием фолацин.

    N-{4"-[(2-амино-4-окси-6-птеридил)-метил]-аминобензоил}-L(+)-глутаминовая кислота.

    Физико-химические свойства
    Желтовато-оранжевые кристаллы без запаха, без вкуса.
    Температура кипения 250 °С.
    Коэффициент разделения октанол/вода 2,81.
    Растворимость в воде 1,6 мг/л при 25 °С.
    Молекулярная масса 441,4.
    Удельное оптическое вращение: +23 о ± 25 о (c= 0.5 М в 0.1 Н натрия гидроксиде).
    УФ max (pH 13): 256, 283, 368 nm.
    Водные растворы фолиевой кислоты разлагаются на свету и в присутствии рибофлавина.
    Кристаллическая фолиевая кислота относительно стабильна в щелочном растворе, менее стабильна в кислотных растворах.
    Фолиевая кислота несовместима с веществами-окислителями, веществами-восстановителями и ионами тяжелых металлов.

    Фармакокинетика
    Фолиевая кислота всасывается в проксимальных отделах тонкого кишечника главным образом в виде свободной птероилмоноглюкановой (собственно фолиевой) кислоты и в значительно меньшей степени – ее диглутамата. Поскольку фолаты пищи представлены преимущественно полиглутаматами с числом глутамильных остатков от 2 до 7, то необходимым условием нормального всасывания является их предварительный гидролиз гамма-альфа-глутамилкарбоксипептидазой (конъюгазой), присутствующей в большом количестве в желчи, соке поджелудочной железы, стенке тонкого кишечника и других тканях.
    При пероральном приеме максимум концентрации фолиевой кислоты в крови достигается через 30–60 мин.
    Фолаты в виде тетрагидрофолиевой кислоты и ее производных распределяются по всем тканям организма. Около половины количества содержащейся в организме фолиевой кислоты депонируется печенью в виде N-5-метилтетрагидрофолиевой кислоты.
    Фолиевая кислота проникает в молоко.

    Источники

    Фолиевая кислота поступает в организм человека с пищей и частично синтезируется в организме микрофлорой кишечника.

    Таблица 1. Содержание В 9 в продуктах питания

    Продукт

    Продукт

    Печень говяжья

    Сыр плавленый

    Печень трески

    Орехи грецкие

    Горошек зеленый

    Мука ржаная обойная

    Помидоры

    Какао-порошок

    Земляника садовая

    Грибы свежие белые

    Капуста белокочанная

    Крупа пшенная

    Масло сливочное

    Творог жирный

    Ставрида

    Крупа гречневая, ячневая

    Лук репчатый

    Капуста брюссельская

    Морковь красная

    Капуста кольраби

    Хлеб ржаной

    Говядина

    Крупа овсяная

    Арбуз, картофель, персики

    Крупа перловая

    Капуста цветная

    Мясо кролика

    Макароны

    Яйцо куриное

    Крупа рисовая

    Баклажаны

    Молоко коровье

    Лук зеленый

    Апельсины

    Перец красный сладкий

    Яблоки, груши

    Таблица 2. Количество продукта, обеспечивающее суточную потребность В 9

    Биологическая роль и функции в организме

    Фолиевая кислота необходима для деления и роста новых клеток. Также фолиевая кислота участвует в одном из важнейших процессов в нашем организме – репликации ДНК.
    Коферментные функции фолиевой кислоты связаны не со свободной формой витамина, а с его восстановленным птеридиновым производным. Восстановление сводится к разрыву двух двойных связей и присоединению четырех водородных атомов в положениях 5, 6, 7 и 8 с образованием тетрагидрофолиевой кислоты (ТГФК). Оно протекает в две стадии в животных тканях при участии специфических ферментов, содержащих восстановленный НАДФ. Сначала при действии фолатредуктазы образуется дигидрофолиевая кислота (ДГФК), которая при участии второго фермента – дигидрофолатредуктазы – восстанавливается в ТГФК:

    1. Перенос одноуглеродных остатков
    Доказано, что коферментные функции ТГФК непосредственно связаны с переносом одноуглеродных групп, первичными источниками которых в организме являются β-углеродный атом серина, α-углеродный атом глицина, углерод метильных групп метионина, холина, 2-й углеродный атом индольного кольца триптофана, 2-й углеродный атом имидазольного кольца гистидина, а также формальдегид, муравьиная кислота и метанол. К настоящему времени открыто шесть одноуглеродных групп, включающихся в разнообразные биохимические превращения в составе ТГФК: формильная (–СНО), метильная (–СН 3), метиленовая (–СН 2 –), метенильная (–СН=), оксиметильная (–СН 2 ОН) и форми-иминовая (–CH=NH).
    Имеются данные, что производные ТГФК участвуют в переносе одноуглеродных фрагментов при биосинтезе метионина и тимина (перенос метильной группы), серина (перенос оксиметильной группы), образовании пуриновых нуклеотидов (перенос формильной группы) и т. д. Перечисленные вещества играют исключительно важную роль в биосинтезе белков и нуклеиновых кислот, поэтому становятся понятными те глубокие нарушения обмена, которые наблюдаются при недостаточности фолиевой кислоты.

    2. Участие в метаболизме нуклеиновых кислот
    Фолиевая кислота играет важную роль в синтезе ДНК двумя различными путями: 1) синтез ДНК из тимидина и пуринов зависит от фолатов; 2) фолат необходим для синтеза метионина, а он, в свою очередь, для синтеза S-аденозилметионина. S-аденозилметионин является донором метиленовой группы (одноуглеродный остаток), который используется во многих биохимических реакциях метилирования, включая метилирование участков РНК и ДНК. Метилирование ДНК может быть важным процессом в профилактике рака.

    3. Участие в аминокислотном обмене
    Фолат необходим для метаболизма ряда важных аминокислот. Так синтез метионина из гомоцистеина требует наличия фолиевой кислоты, а также витамин B 12 -зависимых ферментов.

    Таким образом, дефицит фолиевой кислоты может привести к снижению синтеза метионина и накоплению гомоцистеина. Повышение уровня гомоцистеина может быть фактором риска развития сердечно-сосудистых заболеваний, а также ряда других хронических заболеваний.

    Дозировки

    Таблица 3. Нормы потребления в России и США

    Возраст

    Россия

    Нормы физиологической потребности

    (мкг/сут)

    Верхний допустимый уровень потребления (мкг/сут)

    Новорожденные

    Не установлен

    Не установлен

    Не установлен

    Дети

    Мужчины

    Женщины

    Беременные женщины

    В период лактации

    Симптомы недостаточности

    Причины возникновения недостаточности фолиевой кислоты у человека:

    • первичная алиментарная (пищевая) недостаточность фолиевой кислоты и ее активных соединений;
    • неполное расщепление фолиевой кислоты и фолатов в пищеварительном тракте на свободные и всасывающиеся формы;
    • нарушение всасывания в кишечнике, вызванное острыми и хроническими заболеваниями;
    • нарушение усвояемости фолиевой кислоты после ее всасывания, вызванное сопутствующей недостаточностью других пищевых факторов (витамины В 12 , С) или наличием аналогов-антагонистов.

    Также причиной недостатка фолиевой кислоты могут стать состояния, при которых возникает повышенная потребность в этом веществе: беременность и роды, рост и развитие (у грудных и маленьких детей).
    Недостаток фолиевой кислоты во время беременности может привести к преждевременным родам, преждевременному отделению плаценты, послеродовым кровотечениям. Нередко наблюдаются дефекты новорожденных: расщелина позвоночника и анэнцефалия, которые развиваются в случае неполного закрытия головного и спинного мозга эмбриона.

    Клиническая картина гиповитаминоза развивается медленно, поскольку запасы фолиевой кислоты в организме исчерпываются только через 3–6 мес. При недостатке фолиевой кислоты страдают прежде всего ткани, в которых протекает интенсивный синтез ДНК и высока скорость деления клеток, в первую очередь это кроветворная и пищеварительная системы. Развивается гиперхромная анемия с появлением в периферической крови мегалобластов (с меньшим содержанием ДНК). Эти эритроциты нестойки, быстро распадаются, следствием чего является повышение в сыворотке крови уровня билирубина. Несколько позже присоединяются лейко- и тромбоцитопения, повышенная кровоточивость слизистой оболочки пищеварительного тракта.

    Симптомы недостаточности фолиевой кислоты:

    • бледность видимых слизистых оболочек, особенно конъюнктивы,
    • сухой ярко-красный язык,
    • ахлоргидрия,
    • запоры или поносы,
    • расстройства чувствительности полиневритного характера,
    • повышение температуры.

    Показания к применению

    • Гиповитаминоз В 9 .
    • Мегалобластические анемии (пернициозная, агастральная, глютеновая энтеропатия).
    • Анемии: железодефицитная, постгеморрагическая, апластическая.
    • Анемии вследствие интоксикации.
    • Лучевая болезнь.
    • Лейкопения различной этиологии.
    • Беременность и подготовка к ней.
    • Болезни и состояния, при которых возрастает потребность организма в фолиевой кислоте:
      • алкоголизм,
      • гемолитическая анемия,
      • продолжительный понос,
      • лихорадка,
      • гемодиализ,
      • затянувшееся заболевание,
      • болезни тонкой кишки,
      • болезни печени,
      • стресс,
      • операции на желудке.

    Безопасность (переносимость различных форм, симптомы гипервитаминоза)

    Фолиевая кислота обладает невысокой токсичностью даже при применении ее в большом количестве. Однако длительный прием очень высоких доз (более 100 мг) фолиевой кислоты может оказывать токсическое и аллергическое действие.

    Симптомы гипервитаминоза:

    • зудящая сыпь,
    • головокружение,
    • одышка,
    • боли в области сердца,
    • сердцебиение,
    • бронхоспазмы,
    • эритема.

    Взаимодействие (с другими микронутриентами)

    Витамин В 9 разлагается в присутствии витамина В 2 (рибофлавина).
    Цинк нарушает всасывание витамина В 9 за счет образования нерастворимых комплексов.
    Витамин С способствует сохранению витамина В 9 в тканях.

    Фо́лиевая кислота́ (лат. acidum
    folicum, фолацин; от лат. folium -лист) -
    водорастворимый витамин B9 необходимый для
    роста и развития кровеносной и иммунной
    систем. Наряду с фолиевой кислотой
    квитаминам относятся и её производные, в том
    числе ди-, три-, полиглутаматы и другие. Все
    такие производные вместе с фолиевой кислотой
    объединяются под названием фолацин.

    Химическая формула

    C19H19N7O6

    Структурная формула
    Масштабная модель молекулы
    в пространстве

    История открытия

    В 1931 году исследователь Люси Уиллс сообщила о том,
    что приём дрожжевого экстракта помогает
    вылечить анемию у беременных женщин. Это
    наблюдение привело исследователей в конце 1930-х
    годов к идентификации фолиевой кислоты как главного
    действующего фактора в составе дрожжей. Фолиевая
    кислота была получена из листьев шпината в 1941 году и
    впервые синтезирована химическим способом в 1945.

    Биологическое значение

    Фолиевая кислота необходима для создания и
    поддержания в здоровом состоянии новых клеток,
    поэтому её наличие особенно важно в периоды быстрого
    развития организма - на стадии раннего внутриутробного
    развития и в раннем детстве.

    Биологическое значение

    Процесс репликации ДНК требует участия фолиевой
    кислоты, и нарушение этого процесса увеличивает
    опасность развития раковых опухолей

    Биологическое значение

    От нехватки фолиевой кислоты страдает костный мозг, в котором
    происходит активное деление клеток. Клетки-предшественники
    красных кровяных телец, образующиеся в костном мозге, при
    дефиците фолиевой кислоты увеличиваются в размере, образуя
    так называемые мегалобласты и приводя к мегалобластной
    анемии.

    Суточная норма

    Взрослые - 400 мкг
    Беременные женщины - 600 мкг
    Кормящие женщины - 500 мкг
    Дети - 150 до 300 мкг в день

    Животные и человек не синтезируют фолиевую
    кислоту, получая её вместе с пищей, либо благодаря
    синтезу микрофлорой кишечника.

    Фолиевая кислота в значимых количествах
    содержится в зелёных овощах с листьями, в
    некоторых цитрусовых, в бобовых, в хлебе из муки
    грубого помола, дрожжах, печени, входит в состав
    мёда.

    Гиповитаминоз

    Развивается редко, в основном при нарушениях усвоения ее
    организмом.
    Симптомы гиповитаминоза: “красный язык”, анемия, апатия,
    усталость, бессонница, беспокойство, нарушения
    пищеварения, поседение, замедление роста, затрудненное
    дыхание, проблемы с памятью, врожденные дефекты
    потомства.
    При дефиците фолиевой кислоты у беременной возрастает
    вероятность развития токсикозов, депрессий, появляются
    боли в ногах, развивается анемия беременных.

    Гипервитаминоз

    Большие дозы фолиевой кислоты иногда вызывают у детей
    диспепсию, повышение возбудимости ЦНС, могут привести к
    гипертрофии и гиперплазии эпителиальных клеток почек.
    Длительное применение больших доз фолиевой кислоты не
    рекомендуется из-за возможности снижения в крови
    концентрации витамина В12.

    ОБЩИЕ ДАННЫЕ О ДЕЙСТВИЕ ФОЛИЕВОЙ КИСЛОТЫ:
    Фолиевая кислота принимает активное участие в процессах регуляции
    функций органов кроветворения, оказывает антианемическое воздействие
    при макроцитарной анемии.
    Фолиевая кислота влияет на функции кишечника и печени, повышает
    содержание холина в печени и препятствует ее жировой инфильтрации.
    Фолиевая кислота поддерживает иммунную систему, способствую
    нормальному образованию и функционированию белых кровяных телец.
    Фолиевая кислота играет важную роль при беременности. Она регулирует
    формирование нервных клеток эмбриона, что крайне важно для нормального
    развития. Ежедневный прием фолиевой кислоты на ранних сроках
    беременности может предупредить такие дефекты нервного ствола плода, как
    аненцефалия и расщепление позвоночника (spina bifida) в 75% случаев.
    Кроме того, фолиевая кислота предотвращает преждевременные роды,
    рождение недоношенных детей и преждевременный прорыв околоплодной
    оболочки.
    Фоливевая кислота незаменима для снятия послеродовой депрессии, так
    что ее по праву можно назвать самым главным “женским” витамином.
    В высоких дозах фолиевая кислота обладает эстрогеноподобным действием,
    она может замедлить наступление менопаузы и ослабить ее симптомы, а у
    девушек-подростков она может корректировать задержку полового развития.

    Фо́фолиевая кислота́ (лат. acidum folicum, фолацин; от лат. folium лист) водорастворимый витамин B 9 необходимый для роста и развития кровеносной и иммунной систем. Наряду с фолиевой кислотой к витаминам относятся и её производные, в том числе ди-, три-, полиглутаматы и другие. Все такие производные вместе с фолиевой кислотой объединяются под названием фолацин.лат. кровеносной иммунной систем витаминам






    История открытия В 1931 году исследователь Люси Уиллс сообщила о том, что приём дрожжевого экстракта помогает вылечить анемию у беременных женщин. Это наблюдение привело исследователей в конце 1930-х годов к идентификации фолиевой кислоты как главного действующего фактора в составе дрожжей. Фофолиевая кислота была получена из листьев шпината в 1941 году и впервые синтезирована химическим способом в Люси Уиллсдрожжевого экстрактаанемиюшпината






    Биологическое значение От нехватки фолиевой кислоты страдает костный мозг, в котором происходит активное деление клеток. Клетки-предшественники красных кровяных телец, образующиеся в костном мозге, при дефиците фолиевой кислоты увеличиваются в размере, образуя так называемые мегалобласты и приводя к мегалобластной анемии.костный мозгмегалобластымегалобластной анемии


    Суточная норма Взрослые мкг Беременные женщины мкг Кормящие женщины мкг Дети до 300 мкг в день








    Гиповитаминоз Развивается редко, в основном при нарушениях усвоения ее организмом. Симптомы гиповитаминоза: красный язык, анемия, апатия, усталость, бессонница, беспокойство, нарушения пищеварения, поседение, замедление роста, затрудненное дыхание, проблемы с памятью, врожденные дефекты потомства. При дефиците фолиевой кислоты у беременной возрастает вероятность развития токсикозов, депрессий, появляются боли в ногах, развивается анемия беременных.


    Гипервитаминоз Большие дозы фолиевой кислоты иногда вызывают у детей диспепсию, повышение возбудимости ЦНС, могут привести к гипертрофии и гиперплазии эпителиальных клеток почек. Длительное применение больших доз фолиевой кислоты не рекомендуется из-за возможности снижения в крови концентрации витамина В12.


    ОБЩИЕ ДАННЫЕ О ДЕЙСТВИЕ ФОЛИЕВОЙ КИСЛОТЫ: Фофолиевая кислота принимает активное участие в процессах регуляции функций органов кроветворения, оказывает антианемическое воздействие при макроцитарной анемии. Фофолиевая кислота влияет на функции кишечника и печени, повышает содержание холина в печени и препятствует ее жировой инфильтрации. Фофолиевая кислота поддерживает иммунную систему, способствую нормальному образованию и функционированию белых кровяных телец. Фофолиевая кислота играет важную роль при беременности. Она регулирует формирование нервных клеток эмбриона, что крайне важно для нормального развития. Ежедневный прием фолиевой кислоты на ранних сроках беременности может предупредить такие дефекты нервного ствола плода, как анэнцефалия и расщепление позвоночника (spina bifida) в 75% случаев. Кроме того, фофолиевая кислота предотвращает преждевременные роды, рождение недоношенных детей и преждевременный прорыв околоплодной оболочки. Фоливевая кислота незаменима для снятия послеродовой депрессии, так что ее по праву можно назвать самым главным женским витамином. В высоких дозах фофолиевая кислота обладает эстрогеноподобным действием, она может замедлить наступление менопаузы и ослабить ее симптомы, а у девушек-подростков она может корректировать задержку полового развития.